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STABILITY DIAGRAMS OF THE PERIODIC NOTIONS OF A PENDULUM WITH AN 
OSCILLATING AXIS* 

Z.S. BATALOVA and G.V. BELYAKOVA 

Periodic rotations of a pendulum with a harmonically oscillating axis of 
suspension are studied analytically and numerically. General regularities 
in their bifurcation diagrams are established, depending on the evenness 
of the numbers characterizing the number of rotations of the pendulum and 
the period of oscillations of the axis of suspension. 

The phenomenon of the dynamic stability of the upper position of the 
pendulum and the effect of vibrational excitation and of the maintenance 
of its rotations have found wide application in modern devices and 
mechanisms /l-3/. Themathematicalmodelsofthemotionsofaparametrically 
excited pendulum in the form of non-linear, non-autonomous differential 
equations, taking resistance forces into account, were studied by 
analytical methods and a number of periodic modes were investigated 
numerically (see /2/ where a survey of the investigations and a biblio- 
graphy are given, and also /4-6/l. In the Hamiltonian case the periodic 
motions of a rotational body have not been studied before. 

The present paper deals with periodic rotations of a parametrically 
excited non-linear oscillator, without taking the dissipation into account. 
The Cesari method is used to obtain the generating solutions, a number of 
periodic rotations of a single type are established and their stability 
is studied in the case when the values of two parameters are small. A 
number of solutions of practical interest are continued numerically into 
the domain of large values of the parameters. The bifurcation diagrams 

l Prikl.Uatem.Mekhan.,52,1,55-63,1988 
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of periodic solutions are constructed, containing domains of their 
stability (to a first approximation) and the bifurcations of the 
appearance and change in the stability of these solutionsare clarrfied. 

1, Eormulatlon of the problem, The simplest mathematical. model of the motions of d 
pendulum whose axis of support executes harmonic oscillations along the vertical, is represented 
by the equation /7/ 

2" + (a + b cos 2t) sin I = 0 (i-i) 

where z is the deflection of the pendulum from the vertical, and a and b are parameters. The 
problem consists of determining the conditions for the occurrence and stability of periodic 
motions of the pendulum synchronous with the oscillations of its axis, i.e. of solutions r,,, 
of Eq.(l.l) which will satisfy the condition = 0 + P4 =s(t)f2nl where p=f,2,..., q-0, 

f f. f 2,,... Here 171 denotes the number of rotations of the pendulum about the axis in the 
positive direction (?> QI or negative direction (g<O) over p periods of the oscillations 
of the axis, and 9 = 0 corresponds to states of rest or to oscillatory motions about the 
vertical. 

2. Periodic solutions for small values of the parameters. When a= ball, 
Eq.cl.11 has an infinite set of solutions 

;r(@ = 2k + a, P = g/J), Q = const c f0, 2%) (2.1) 

where r is a simple fraction belonging to the interval (-00, w). Let us find the values of 
a corresponding to the generating solutions and elucidate the nature of the stability of the 
periodic solutions pp,q for small values of a and b. 

We shall use the Cesari method* (*Sarychev V-A. and Sazonov V.V., Ona method of 
investigating the periodic solutions of ordinary differential equations. Preprint iO~,t~oscow, 
In-t Prikl, Katematiki, 1976.) to obtain the values of a as simple roots of the bifurcation 
equation Y(cc,n,5) = 0, The stability of the generating solutions rps9 is determined by the 
sign of the derivative dVfdu calculated at the corresponding CL. When the condition dV/&t,< 
0 holds, the solution rp,a is stable (to a first approximation). If the inequality does 
not hold, then rp,p is unstable. 

We will make the substitution 1l. ;?."I _r - 2tr and write a - a,b” where m is a positive 
integer and a,,, is a constant. We obtain the equation 

u" -t (hbm + b cas2t) sin (tl + 2tr) (2.2) 

Following the Cesart method we shall construct an auxiliary system 

u*’ + (a,,,bm + b cos 22) ain (u + 2tr) - V (a, b) = 0, S u dt-= a (2.3) 
0 

The solution of this system consists of two functions it = u(t, a, b), V = V @,b) represented 
by the series 

u (t. a. b) = u + *sl uk (1, a) bk, 
m 

V(a,b)= x ux(a)b’ (2.4) 3 k-l 

where Wr (4 4 are the pn-periodic functions of the variable t. The presence of a simple 
root a(b) of the bifurcation equation V(o, b)= 0, represents the necessary and sufficient 
condition for the existence of a unique, m-periodic solution of Eq.(z.z) transforming, as 

b+O, into the solution U-+a(O). If u#(a)rO(i=i,2,..., k-ii), v,(a)+@ in (2.4) and a 
value of CL~ exists for which vl,(uai)= 0, dut {acLl)f&+O, then the bifurcation equation has a 
simple analytic root a(b)* aI’ as b-0. This means that in order to determine the roots 
of the equation V(a,b) = 0 for small b>O .it is sufficient to find the first coefficient 

nk (a) * 0 and investigate its roots. 
With this purpose in 

the function h&+26-) 
This yields the system 

mind, we shall substitute series (2.4) inta system (2.31, expand 
in a Taylor series and equate the coefficients of like powers in b. 

*' = &-, (i, a)= 21 + &,,, (t, a)s, - uk (a) 

f+dt=O (m=i,2 t... ;k=f,2,...) 
# 

where 
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F (t, a) = 4 [ia, COB (a + 2tr) + (a, - i) sin (a + 2tr)] X 

‘I= n 

C,is the set of collections of integers j and 9, satisfying the conditions 

so = 0, sj> 0, _i_is,-n 
The system (2.5), (2.6) contains, apart from the unknown functions uk (& a), vk (a), the 

unknown constants a,,, and m. In the case of a simple fraction T, we shall determinethesevalues 
by successive determination of the solution of system (2.5), (2.6) for m, k = i, 2,. . . ., 
beginning with the conditions for the existence of a non-trivial function t+(a). For m=i, 
k= I Eq.(2.5) will be written in the form 

u," = -(al +- co9 2t)sin (a + 2tr) - v1 (a) (2.7) 

Integrating this equation we obtain a solution depending on two arbitrary constants C, 
and Cz. Since the functions +(&a) must be pn-periodic in t, we shall assume, from now on, 
that Cl = C,=O. Then the solution of (2.7) will become (here and henceforth the upper and 
power plus and minus signs will be in correspondence) 

u, = -I/* (a, sina + v,)P + '/, sinacos 2t, r = 0 

u1 = ‘/,a, sin (a _i 2t) + 1/a sin (a f 4t) - I/* (u, + ‘/,sina) P, 
r=_tl 

(2.3) 

(2.9) 

u,=(&)Pa,sin(a+2tr)+ ais'~~~l({~+')l + (2.10) 

sin [a + 2,!(r- i)] 1 
8(T- i)' 

-- 2 v,t', r#O,*1 

For r= _ti the condition (2.6) determines the coefficient vr(a)= 4/,sina. The equation 
u1 (a) = 0 has simple roots a,=0 and a, = n which corresponds to two generating solutions 
with p = q = 1 and two solutions with p = 1,q = -1. The function v1 (a) doesnot depend 
on al, and this means that for any value of a and b two solutions I':,, and two solutions 
r:,_, (1 = 1, 2) exist. When a, b are sufficiently small, the condition dVMa<O can be re- 
placed by the inequality 

When checking (2.11) it was found that the stable solutions r:,, and I':,_, 
(2.11) 

correspond 
to the root a,=O, and unstable solutions c,r and c,_, to the root a, = n . 

When q=O, we find that s(a) = -arsina. The roots a,= 0 and a, = n of the equation 

vr (a) = 0 correspond to the stationary solutions z= 0 and 2 = A, and we shall denote 
them by r:,, and c,,. From (2.11) it follows that the solution r;,, (c,,,) is stable when 

=1> 0 (a1 < 0)' and unstable when a, < O(a,>O). we find that thevalue u = aI =0 corresponds 
to the change in the stability of the stationary solutions. Additional investigation of this 
bifurcation is carried out below at m = 2. 

When r+O,+l, condition (2.6j yields v,(a)=O. Therefore we write k- 2 in (2.5) 
and consider the equation 

4" = -(or + co9 2t) cos (a + 2k)u, - v, (a) (2.12) 

Substituting (2.10) into (2.12) we obtain 

4 = [ $& + d$Z :,, ] sin 2 (a + W + 2( (c__ i)c x 

[ -& +$-]sin2(a+:(2r-Q)+ 

2(G+ir dir [ -+q sin2(a-+t(2r+l))+ 

sio2(a+-24(r- 1)) 
P(r-I)’ 

+ sla2(a+u(r+f]) _ 
rv+tr 

air sin a rsln4I 
B(r + 1p (I - I)’ - t (I - I)’ (r + I)’ - uJ @)* 

r # a Hn fi 

(2.13) 



44 

Uz=+((2; + &)sin2(a&f)T$-sin21 -i-$-sin2(~~f~)_+ 

&sin2(a*33t),&sin4t -+Psin2q$ 

+sin2(a*22t)- *t2, G-&. 

(2.14) 

In the case of r = +1/z ( condition (2.6) determines v*(a) : --'/,a,sin%z. The equation 
v, (a) = 0 has the roots 0, II 12. IT, 3nl2. The values a = 0 and a = n correspond to the 
generating solution x1 = +t, a = n/2, and a = 3nl2 to the solution zI = &t + n/2. As In the 
case if Q = 08,the solution G.*, is stable when a, > 0 while rj,*, is unstable, and their 
stability changes when a, = a = 0. 

For r#O,__~~/~,tl the coefficient u,(a) = 0 for any a,. When k = 3, Eq.(2.5) takes 
the form 

U3 *' = -(a, + cos 2t)l1~,cos (a + 2tr) - 

'/,u,'sin (a + 2091 - vg (CL) 

Substituting (2.10) and (2.13) into (2.15) and integrating, 

us (G a) which is lengthy and is therefore omitted. Using (2.6) 

(2.15) 

we obtain the coefficient 
we find for r = +1/Q 

We find that we have, for any a,, six roots a,= ns/3(s = 0, 
even s (including s = 0) correspond to the generating solution 

1 ,. . . .( 5). The roots a, with 
rl (t) = +*lst, and those with 

odd s to the solution x,(t) = +“l,t + ‘Igz. A check of the condition (2.11) showed that the first 
solution generates a stable solution &,, and the second an unstable solution &,. Using 

(2.6) for r = -&‘I, we obtain us (a) = -sina. The equation u,(a) -0 has simple roots a, =O 
and a,= n. The root u, corresponds to the stable solution I':,,, and a, corresponds tothe 

unstable solution r:,+,. 

For r = -&-=/a and r I=: -+a/* we have v,(a)= -a,sin3a and v; (a)- --a,sina. When studying 
the roots of the equation v,(a) : 0, we found that the generating solutions are Xl = .:+:v,t, 

X2 = -pls,t + =/g-l and x, = &4t, 4 = :k4t + n. As in the case of r = 0. &‘I,, a change in the 

stability of the generated solutions I&, r&l, I&, r;,*, occurs when a = 0. For r p _I.:'/s, 

=I19 -c'I*, _(:'I, the function vI (a)=O. Continuing this process for k = 4. 5,. . ., we candeter- 
mine the value and character of the stability of the solutions rP,p for other values of r. 

The results of solving systems (2.5), (2.6) for m = 1 and integral values of kranging 
from 1 to 10 have shown that in the case of odd values of p and q we can find the value of the 
fraction q/p determined by the system (2.5), (2.6) with odd value of k. To do this we must 
construct the sequences of all irreducible fractions WI where s is an odd number, 
slk < 1. 

0< 
Then every fraction slk will have a corresponding pair of fractions 

q=+kl and lql/p(q=fs, p = k). Here the equation 
P/lql(P=s, 

roots al = d/p (I = O,l,. . ., 2p - 1) 
vr(a) = yP,psinpa = 0 (?,,,q < 0) with 2~ 

corresponds to the fraction PIP * The roots with an even 
index (including I= 0) correspond to the stable solution and those with an odd index 
to the unstable solution I':.,. 

rk,,, 
This enables us to formulate the following assertion. 

Theorem 1. When a and b are sufficiently small, Eq.Cl.1) will have, for any pairofprime 
numbers p and q, stable (to a first approximation) and unstable periodic solutions I$,, and 

rz P.Q generated by the solutions x1(t)= 214/p and x,(t) = (2Q + n)/p respectively. 
Let us explain the bifurcation which occurs when the nature of the stability of the 

solution rp,q change when u = 0 for the prime numbers p and g, one of which is even, As in 

the case of m = 1, we have found for m= 2,3,. . ., 8 the functions uk (t,u) and vk (a) for 
all k from 1 to 14. 

Let us first formulate some general conclusions which follow from the results obtained, 
and then illustrate them with specific examples. 

lo. The coefficient r+(a)= 0 for all values of k# 2 (m-i), 2m (this includes the 
case in which the inspection of the roots of the equation 
data as compared with m ='I)., 

z+(u)= 0 does not yield any new 

2O. If k = 2 (m - i),2m, then the function vt (a) has the form 

4(u)=-sinpa(amAt+Btc0.9~) 

where At and Bk are positive constants depending on p and q. 

(2.16) 
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3O. In order to establish the values of p and q which are determined by the system (2.5), 
(2.6) with k=_(m-1) and k = Sm. we must construct the corresponding sequences (s/(m - 

I)} (Ogs/(m - l)<i) and {s/m) (O<s/m< 1) of all irreducible fractions where s is an even 
(odd) number, J=O when m = 2 (for the first sequence). The fraction Iql/p corresponds 
to every fraction s/@-l), and the fraction p/lqI to s/m . 

As the first example we shall study the solutions rl,o corresponding to the lower or 
upper position of equilibrium of a pendulum , or to its oscillations about them. When m=2 
and k- 1, we obtain Eq. (2.7) not containing (I,. Condition (2.6) determines v,(a) = 0 for the 
solution (2.8), which confirms the statement lo. When k=2(m-1)=2, we have 

u,"=---o,sina-~ul~21cosa-uv,(a) 

Let us substitute (2.8) into the above expression and find the solution. Using (2.6) 
we obtain the function v,(a)=-Gna (~s+*/,~~a). Apart from the roots a,=0 and a,= n (compare 
m=l), the equation D* (a) = 0 has, at Io,i-= 1 dP1<*/,, simple roots a,= arccos(--80/P), a,=2n- 
arcces (-Mb') which correspond to n-periodic solutions rf,, and l':, of the oscillatory 

type. The roots a, and a, are continuous functions of the parameters a and b. when the value 
of o/P increases within the interval (-Yp, I/.) , the root a, increases from zero to n and a, 
decreases from 2n and n. Since the function v,(a) is 2n-periodic, it follows that when o= 
--bYa , the roots aI and a,merge with the root a,= 0, while when D = b’/8, they mergewith a,= n. 

We find that apart from two stationary solutions 
solutions I& c',O 

&:I (t)= 0 and r:,B:z (I) = ", two periodic 
exist in the region Inlb'I<r/a for smallaand b. The periodic solutions 

of the oscillatory type merge, on the curves I,_,: o = -b*/8 and l',,,: II = b’l8 withthe solutions 

r:.Ll and I':,, respectively. 

In order to clarify the nature of the stability of the solutions, we shall obtain the 
derivative dvJcla= --((a/b*) cola +i/8 co9 2a) and calculate its value at a= aI. Using (2.11) we 
find that the solution l':,, is stable in the region 07 b*/8, and IT,, is unstable. Con- 

versely, in the region a < -b’B the solution I':,, is unstable and F' ,,0 is stable. When 

1k(<b'/8 both solutions are stable and periodic solutions r:,, and I& corresponding to 

the roots a,and (I, are unstable. Thus the change in the nature of the stability of the 
solutions r(t)= 0 and t (t) = n on the curves h,O and li.0 respectively is accompanied by 

the appearance of two unstable periodic solutions I& and I'; o. This agrees with numerical 

results obtained for the stationary and periodic solutions r,,,,.* (*Batalova Z.S. and 
Belyakova G.V., On the structure of phase space of the equations of motion of a pendulum with 
an oscillating point of support. Gor'kii, 1984. Dep. in VINITI, 31.05.84: 3539-84.) 

Further we take, for n&=2, the value k= 2m= 4. The sequence (r/m) contains a single 
fraction '12, i.e. we obtain for the case q/p = **/I the non-trivial function v, (a). without 
dwelling on the solution of system (2.5), (2.6) with the values k= 1.2.3 for which the 
function ck(a)zO, we shall write the Eq.(2.5) at k=4 

u,” = -a*(u, co9 (a * 41) - r/'& sin (a + 4,) - co9 2L[(u, - r/:4*) x 
cos (a* 41) - Y,Y~ sin (a*.:)] - v,(a) 

Substituting' here the expressions found for II,, u,, UI , we obtain the solution ~~(1, a). 
The condition (2.6) determines the coefficient u,(a)= --sina,(28&,+25caa a) and from this it 
follows that the equation v,(a)= 0 has, for any 4, simple roots a,= 0 and a, - II. More- 

over, when la,1 = 1 a/b* I, roots a,= arccon (-d(wb*)),a,= 2n - as (x = D/rr) exist. When o/M 
increases from --x to x, the root a, increases from zero to ‘n and a, decreases from 2n 
to II. 

Using these data and condition (2.11) we find that for sufficiently small a and b there 
exist two bifurcation curves h,,:o= --XV and l;,,:k=xP which divide the neighbourhood of 
the point (0.0) into three regions. In the region 1 a I < xb’ four solutions exist r:,,(i=t, 

2.3.4) where <.*, and I?,*, are stable to a first approximation, while quti and I?, 

are unstable. In the region a>xl+(o<--xY) we have a stable solution I':,.,(c,*,j and an 

unstable solution 4.B (I%*,). The change in the stability of the solutions r:,* and I':,*, 

occurs on the bifurcation curves !,,, and s,. respectively, leading to the appearance of 

unstable solutions r;,ti and %, 

In the next example we take m = 3. We shall find the values of p and q for which the 
roots of the bifurcation equation can be found. In the case of k=2(m-1)=4 and k =2m=-6 
the sequences shown in Sect.3 contain the functions %and '18 respectively; therefore the 
consecutive solution of system (2.5), (2.6) yields a non-trivial function v,(a) for q/P= +% 
and the function &(a) for q/p - P/t. ’ 
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In the case of $p _ 4.1 ', ‘- the equation l', (a) 7 ---rir sin 2a (3a, -,- I:( ~0s 2,~) . . . . 0 has, for dliy 03 , 
simple roots 6, x/2. n,3~1/2. The roots 0 and n correspond to the generating solution I, (I) = !- t 
and the roots ni2 and 3n/2 to the solution z*(l)= +t-;rr/2. When 1 (I, 1 :: 1 n/P 1 < iI24 , the 

equation also has the roots CI,~ = 'in ~rccoa (--ai(24fl)), a,* = n +- a,', a,' = 2n -CL,), a,' = pi - a,s, which 
correspond to two generating solutions rs(l)= -+t+ar* and z,(1)= *~+cz,~. When ai bS increases 
in the intervai (--'/u. %4), the roots a,> and CZ,~ increase from zero to ni2 and from n to 

3d2 respectively, while the roots a,' and a*' decrease from 2s to 3n;2 and from n to 

n/2. Taking these data and condition (2.11) into account, we obtain the following result for 

the analysis of the stability of the solutions F:**r generated by the solutions II(~). For 

sufficiently small a and b we have two bifurcation curves I,,,: (I= -PI24 and 1,,* : (I -= b’/24, 

which divide the neighbourhood of the point (6. 6) into three regions. When 1 a 1 < bV24 , we 
have two stable solutions C,fl and I?,*, , and two unstable solutions P,"** and l&r. In 

the region o> bW4 the solution P& is stable and P:,*r is unstable, while in the region 

a<-p//24 the converse is true, namely Pi,,, is unstable and Ff,,, is stable. When the 

point (a,,b) passes across the bifurcation curve Zr.r (14.1) into the region 1 (I 1 < bY24 , the 

change in stability of the solution %,I (I:*1 ) is accompanied by the appearance of solutions 

e,** and F:,fl. 

In the last example, where In=: 7, we shall show the values of p and g for which the 

values of the roots of the bifurcation equation have been found. When k=Z(m-i)= 12, the 

sequence of irreducible fractions (see 3O) contains the fractions 118, 'I,. The non-trivial 

function v,,(a) of the form (2.16) with p= 6 is obtained for the values dP = ?I. and 

qlp = f’l,. When k= 2m= 14, the sequence contains the fractions "I,. 'I,, 'I:. The function 

u,,(a) with p = 2, 4, 6 is obtained for q/p = 3?kk-%, zb’/*. 
In all these cases we have found two bifurcation curves I,,, and I& on which the 

stability of periodic solutions r:,, and r;,, changes and two unstable solutions p P.V 

and % appear. The results of the special cases of a= 0 and 9' 0* (* Batalova Z.S. 

and Eukhalova N.V., Periodic oscillations of a pendulum with oscillating vertical axis of 

rotation. Gor'kii, 1984, Depd. in VINITI 01.02.84, 618-84. See also the previous footnote.) 

discussed earlier lead to the following general assertion. 

Theorem 2. For sufficiently small a and b there exist, for any pair of prime numbers p 

and Q, one of which is even (including q =O), periodic solutions pp,q and % generated 

by the solutions .zi(t) = 2tq/p and q(t)= (2tq + x)/p respectively. The bifurcation curves 

1. : a = -a,b”’ and lp,q :a = a,b”‘(a,>O) emerging from the point (O,O), dividetheneighbour- 
h%I of this point into three regions. To the right of the curve lk,, the solution l$, is 

stable and ri,, is unstable, to the left of the curve I,,,, the solution ri,,, is unstable 

and r:. P stable. A change in the stability of the solutions r:,, and ri,, occurs on 

the curves l,,, and lp.p respectively, and is accompanied by the appearance of another two 

solutions r",,, and r:.,. Four solutions exist in the region situated between the curves l,,, 

and lp,oI namely the stable r' P.a and r:., and unstable 1",,, and I$,,,. 

3. Domains of existence and stability of periodic rotations of the pendu- 
lum. A set of algorithms and programs /8/ was used to extend the investigation of periodic 

rotations rp, p to the domain of large values of the parameters a and b. The coordinates of 

the initial point N,,,(z (0), z' (0)) corresponding to the solution rp.q were determined in 

the bounded domain G,,, of variation of the parameters, and the multiplying factors &and p, 

characterizing its stability in the first approximation were found. The step A in the par- 
ameters a and b was chosen depending on the magnitude of the multiplying factors. For the 

values of (pl,,( close to +l the value of A did not exceed IO-', and for the other values 
of h.9 the solution was traced using the step A < &2: The results of investigating the 
solutions rp,p were given in the form of stability diagrams in the a,b-parameter plane and 
of the graphs showing the dependence of the initial data 2 (0) and z'(O) on a and b. The 
graphs were given for the solution rp,* and q> 0, since for the equal values of a and bthe 
solutions with q>O and q<O have the same character of stability and the corresponding 
initial points are situated symmetrically about the r-axis (see the reference in time second 
footnote above). 

Let us now consider specific periodic solutions F,, p of Eq.(l.l). The form of some 

of the solutions is shown in Fig.1. 
The solutions Fr,,r and , I’,,’ generated by the solutions I (I) = 2: and r(t)= 2:+ n were 
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studied in the domain %,,(I 0 I i 2-0 6 b < 7). From Sect.2 it follows that when a=b=O, the 
solutions have the corresponding initial points iv,,,1(0,2),N,,1*(n,2). When a and b increase, 
the values of the abscissas of these points do not change, and remain equal to zero, and n. 
The graphs showing the dependence of the ordinates z'(O) are given for the solutions r,J and 

rl,? (the solid and dashed line) in Fig.2a. 
Calculating the multiplying factors ~1 and PI of the solution r1.r' shows that when a 

and b increase from zero, P, increases from unity and P,= h-l, i.e. the soluti.on FL? is 
unstable in the region 6, . Analysis of the multiplying factors of the solution rlL1 en- 
abled us to construct the bifurcation diagram shown in Fig.Zb. The solution pl,? is unstable 
within the shaded regions, thevertical shading corresponds to negative values of PI,: and 

IPlI<~~IP*I>~, and oblique shading to positive values. Non-shaded regions correspond to 
the domains of stability of the solution I',,,'; here pl,, = exp (~Q(o. b)). At the points on the 
curves 1,,, and d,,l we have pl,, = -1 and at the points EL,1 we have p,,,= +I. Thus twoper- 
iodic solutions p,,ll and r,,,' exist in the region Cl,, - The solution rl,2 is unstable, 
the bifurcation diagram of the solution l'& is symmetrical about the straight line a=0 
and contains two domains of stability bounded by the lines b= 0. l,,, and A,,. %,. 

The periodic solutions TrJ and pa,,* generatedby the solutionsIr (1) = *,/t'and'z,(f) = */s:+ */rmwere 
investigatedinthe region G,,,(lol< 025.06 b( 2.2).The initial points A',,1 (0, '/a) and iV'J,,l (ii3n.Vs). 
correspond to these solutions when o= b=O. When a and b increase from zero, the abscissas 
of the points remain unchanged. Curves showing the dependence of the initial velocity z'(O) 
of the solutions r.,,' and r,,,* (the solid and dashed line) are presented in Fig.3a. 

A calculation of the multiplying factors of the solution rs,,s shows its instability in 

the region C,,,. The bifurcation diagram of the solution rr,ll symmetrical about the 

straight line 0 = 0, is shown in Fig.3b. The values of p1 and pI in the region bounded by 
the lines 1,,1 and %I (vertical shading) are negative, and positive at the points (0, 5) 
lying above the curve %,l (oblique shading). On the curves I,,1 and d,,, we have p,,,= -1, 
and on 11,~ we have PI.1 = 1. The solution r,,,’ is stable in the non-shaded areas and here 
we have ~1,~ = exp (fro (0, b)). 
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Analytical investigation and numerical study of other solutions r,, carried out in 
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Sect.2 enable us to formulate the following assertion for odd p and g. 

Theorem 3. In the bounded domain of variation of the parameter a and b there exist, for 
any pair of prime p and q, two periodic solutions pi,, and pp,q. The solution & gener- 

Fd by the solution z,(t),-@fq+sr)/p is unstable. The bifurcation diagram of the solution 

P.4 generated by the solution zr(t)= 24/p contains two regions of stability bounded by 
the lines b = 0, b,, and apUp, Q,,~. When the stability changes on the curves I,,, and dp,9 
the multiplying factors .pl,,= --i on the curve fp.o the multiplying factors pr,, = j-i. For 
any a, b the abscissas of the initial points of the solutions l"k,q and pp.p are zero and 

nip respectively. 

Next we shall consider the periodic solutions p,,, with even p and g. 
The solutions r,,‘,(l = i.2.3,4) were studied in the region G,,,(laI~O.45!O<b<~.~!. The 

solutions r,,]l and rr.l' are generated by the solutions I, (!) = t and I, (t) = t + l/m. A 



calculation of the coordinates of the initial points .r2.,' and , s, ,2 showed t11ot their 
abscissas are equal to zero and ?I:! respectively for any a and b. The graphs in Fig.4R show 
the change in the initial velocity r'(O) of the solutions F2.,' and F,,,- (the solid and 
dashed lines). Fig.4b shows the bifurcation diagram of the solution I',,,' The solution 
r 2.1' is unstable within the shaded regions. At points of the region situated above the 

curve d,,, (vertical shading) the multiplying factors are negative, and in the region bounded 

by the half straight line n<,II.lJ = 0 and the curve I,,, they are positive. The non-shaded 

region represents the domain of stability of the solution I',.,', and here p,,% = ‘!~ll (+iv (cl I 6.:. 

The bifurcation diagram of the solution F1,,2 is symmetrical with respect to the diagram 

of the solution I',,,: about the b axis. The domain of stability of the solution F1.,* is 

bounded by the lines d,,,‘, l,.l’ and the half straight line a <: (I. h - 0. When the stability of 

the solution F?,,* changes on the curve Ir.1 ' two unstable solutions F,.,a and I‘,,,' emerge. 

When computing the coordinates of their initial points .Y,,13 and .\ ?,,(, we found that when 

the point (o,b~ moves from the curve I,,,' to 1:.,, the points move away from the point .S2.,1 

and approach the point X,,,'. On the curve L,,, the points :Yr,,3 and .Y,.,' merge with l,,. .v ’ 
This causes a change in stability of the solution F,,,'. Thus the domain of existence of the 

solutions Fz,l" and F,,l' is a set of points bounded by the curves I*,, and I,.,' emerging 

from the point (0.0). A calculation of the multiplying factors of the solutions F2,,* and T%I 
showed their instability in this region. 

Analogous results were obtained for the solutions Fis,, (i = 1, 2, 3. 4) in the region 

C&lo IQ 0.8. 0 < b < 1.2) (Fig.5a). The stability of the solutions Fn.nl and F1.1' changes on 

the curves Ia.2 and Is,*' (Fig.5b) respectively, and this leads to the appearance of two 

unstable solutions F,,p and Ps,l'. In the ab plane the domain of stability of the solutions 

r:,* (Fst.2) is bounded by the curves '8.2 and d,,, and the half straight line a>O,h= O(&, , ’ 
d;,z and D < 0. b = 0). 

Analogous results were obtained when investigating a 

number of other solutions 
Q d 

TP,P in the case when p and g 

zfa=0 
Lt were even. The region G,,, (I= I < i, Og b<iO) containing 

I- 
0.0s 

m 

'J.r the first domain of stability and "beak-shaped" inclusions 
, a=, of the instability of stationary solutions I (1) 7 0 and 

d I (I) = n were considered for q=l) (see also the references 
a a5 f -1 -0.s 0 shown in the second and third footnotes). 

Theorem 4. When the numbers p and g are prime and one 

Fig.5 of them is even (including q = 0), two periodic solutions 

r;*, and r' p,p qenerated by the solutions z, (f) = 2tq/p and 

z,(t) = (2& i- x)/p exist in theboundeddomainofvariationoftheparametersa andb. Thebifurcation 
’ diagram of the solution r,,,(r’,,,) contains a single domain of stability bounded bythe curves 

dp.Pl Ip.0 and half strafght lines a> 0, b = O(&,,, &,., and a< O,b=O). At the points of 

the curves bsq and lp.q and the straight line b = 0, we have P1.z = -+I, and ion the curves 

&.,, and &, we have p,,,= -1. Moreover, in the region bounded by the curves cq and 

C q emerging from the point 
r;,, F$'d, we 

have two unstable solutions r",,, and r;* P 
appearing when the solution changes its stability on the curve lpu4 (&,& The 
abscissas oftheinitial points of the solutions r' 

when the point (a, Gq 

and I$,, are equal to zero and n/p 
respectively for any a and b. moves from the line i,,, towards lp.q 

the abscissa of the initial point of the solution r:,, (r',.,) varies from zero to x/P(--n/p). 
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